Nuclear power plants are the only viable large-scale alternative to the fossil fuels power plant. They generate clean electricity that do not contribute to global warming. People’s attitudes toward nuclear power have been changing, and Doosan is ready to supply some of the world’s safest and most trustworthy nuclear power plants.
INTRODUCTION

In proportion to the rapid development of Korea’s economy, the demand for electricity has been increased just as quickly. As a leading supplier of Korean nuclear equipment, it has been Doosan’s responsibility to meet this demand.
Doosan entered the business of nuclear power generation starting with the construction of its Changwon plant in 1976 and supplied power plant system to Hanbit nuclear power plant units 1 and 2 until 1986. The period between the two events is known as the 'Technology Implementation Stage' for the company. It was during this time when the company first introduced and implemented the new technology for building nuclear power generation systems and laid the foundation for building such systems by setting up a quality assurance system for nuclear power generation.

Doosan was able to accumulate experience through technology transfer and by carrying out projects after being selected as the main contractor for supplying nuclear steam supply systems for Hanbit units 3 & 4 in 1987. By that time, Doosan already had enough production facilities to develop the main systems. This brought about a significant advancement in the design and production of materials and systems. In addition, by carrying out the Hanul units 3 & 4 project, Doosan was in the stage of technological advancement for its nuclear power business. Doosan began to independently design Hanul units 3 & 4 based on the experience it gained by carrying out the Hanbit units 3 & 4 project and sent its engineers overseas to receive training in the area of production where it lacked the technology as part enhance its capabilities in nuclear power technology.

After its successful completion of Hanul units 3 & 4, Doosan realized its dream of having the technology to design and manufacture main nuclear power systems. Along with this, Doosan also signed a steam generator supply contract for China’s Qinshan units 1 & 2 (phase III) in 1997. The company was eventually recognized by the global market for its technological prowess by exporting main nuclear power systems to China and then to the US. This marked the beginning of Doosan’s technological independence. After that, the company proceeded to also develop the RCP and MMIS technology while carrying out Korea’s Nu-tech 2012 project.

Doosan, as a member of the ‘Korea Team’ that will export the APR1400 while also continuing to build more power plants in Korea, Doosan will also play a key role in exporting Korean advanced nuclear power system (APR1400) to Middle East and Asia. Furthermore, most countries wishing to import nuclear power systems believe local contents will serve as their KSF (Key Success Factor) for building more nuclear power plants. Doosan will help these countries develop their own technology, and Doosan will have a higher chance of becoming an industry leader in nuclear power production.
Doosan Heavy Industries & Construction Co., Ltd.
INTEGRATED MANUFACTURING COMPLEX : Changwon Plant

At Doosan, we’ve consistently brought excellence in engineering, procurement, manufacturing, construction, and service to clients around the world since 1962. We’ve helped utilities build over 680 thermal, combined-cycle, and nuclear power units representing almost 200GW of installed capacity to date in over 30 countries. And along the way, our technical innovations and commitment to total client satisfaction have made us a global leader in power and water.
Global HQ & Changwon plant, KOREA
- Ground Area : 4,429,000m²
- Roofed Area : 425,000m²
EXPERIENCES

Doosan is Korea’s only company that specializes in NSSS (Nuclear Steam Supply System) for nuclear power plants and possesses the highest level of technology. With its NSSS production lines and management systems for design, material, manufacturing, construction, testing, services, maintenance and repair, Doosan is strengthening its position as a leading provider of NPPs in both domestic and overseas markets. Since Hanbit units 1&2, Doosan has so far supplied equipments to total of 21 domestic nuclear power plants.

Worldwide Experiences

- AP1000™ Haiyang #1 SG & RV
- Qinshan III #1,2 SG
- Qinshan II #3 RV
- AP1000™ Sanmen #1 SG & RV & RVI
- AP1000™ Lufeng #1 RVI
- UAE BNPP #1,2,3,4
- Wolsong #2,3,4
- Shin-Wolsong #1,2
- Hanul #1,2,3,4,5,6
- Shin-Hanul #1,2
- Hanbit #1,2,3,4,5,6
- Shin-Kori #1,2,3,4,5,6
- Hanul #1,2,3,4 RSG
- Hanbit #3,4 RRVCH
- Kori #1 RSG
- Kori #1,2 RRVCH

Indian Point #2,3 RRVCH
V.C.Summer #1 RRVCH
Watts Bar #1,2 RSG
Sequoyah #1,2 RSG
ANO #2 RRV & RRVCH

Palo Verde #1,2,3 RRVCH & CEDM
Waterford #3 RRVCH

AP1000™ V.C.Summer #2,3 SG & RV
AP1000™ Vogtle #3,4 SG & RV

* Abbreviations
- RV : Reactor Vessel
- RVI : Reactor Vessel Internals
- SG : Steam Generator
- RRVCH : Replacement Reactor Vessel Closure Head
- RSG : Replacement Steam Generator
Domestic Experiences

Hanbit Nuclear Power Plants (HBN #1,2,3,4,5,6)
Hanul Nuclear Power Plants (HUN #1,2,3,4,5,6)
Shin-Hanul Nuclear Power Plants (SHN #1,2)
Wolsong Nuclear Power Plants (WSN #2,3,4)
Shin-Wolsong Nuclear Power Plants (SWN #1,2)
Shin-Kori Nuclear Power Plants (SKN #1,2,3,4,5,6)
FEATURES OF APR1400
REACTOR COOLANT SYSTEM

The Reactor Coolant System (RCS) is designed to remove heat from the reactor core. RCS of APR1400 consists of one reactor vessel, two Steam Generators, four Reactor Coolant Pumps and one Pressurizer connected to a hot leg. These major components are designed to have a lifetime of 60 years and the seismic design basis of 0.3g SSE is applied to strengthen the resistance to earthquake.

Design Characteristics

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Design Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot leg diameter (in)</td>
<td>42</td>
</tr>
<tr>
<td>Cold leg diameter (in)</td>
<td>30</td>
</tr>
<tr>
<td>Operating pressure (psia)</td>
<td>2,250</td>
</tr>
<tr>
<td>Reactor inlet temperature (ºF)</td>
<td>555</td>
</tr>
<tr>
<td>Reactor outlet temperature (ºF)</td>
<td>615</td>
</tr>
<tr>
<td>Design Pressure (psia)</td>
<td>2,500</td>
</tr>
<tr>
<td>Design temperature (ºF)</td>
<td>650</td>
</tr>
<tr>
<td>Hydrostatic test pressure (psia)</td>
<td>3,125</td>
</tr>
<tr>
<td>Total reactor coolant volume (ft³)</td>
<td>16,020</td>
</tr>
<tr>
<td>Total RCS minimum design flow (gal/min)</td>
<td>446,300</td>
</tr>
</tbody>
</table>
MANUFACTURING CAPABILITY

As the main contractor for Korea’s NSSS (Nuclear Steam Supply System), Doosan maintains the highest level of technology meeting all international standards for manufacturing and quality. Doosan has established its position as a leading supplier of nuclear power components for the international markets and is applying its know-how and experience in a “one-stop” service to cover NSSS production lines of design, raw material, manufacturing, testing, construction and services.

- Made in Doosan - From Forging Material to Services

1. Forging
2. Manufacturing
3. Assembly
4. Testing
5. Shipping
6. Installation
FEATURES OF APR1400
REACTOR VESSEL

The Reactor Vessel designed to withstand high pressure and temperature contains nuclear internals and fuel. The Closure Head is removable to reload the fuel, while the Reactor Vessel is fabricated from ring-forged shells. To enhance safety, APR1400 adopts 4 Direct Vessel Injection Nozzles, which inject the coolant water of Safety Injection Tank into the core directly.

Design Characteristics

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Design Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design pressure (psia)</td>
<td>2,500</td>
</tr>
<tr>
<td>Design temperature (ºF)</td>
<td>650</td>
</tr>
<tr>
<td>Inside diameter at shell (in)</td>
<td>182-1/4</td>
</tr>
<tr>
<td>Overall height of vessel and enclosure head (ft-in)</td>
<td>48 7-7/8</td>
</tr>
<tr>
<td>Minimum cladding thickness (in)</td>
<td>1/8</td>
</tr>
</tbody>
</table>
Forged Shell Manufacturing
The major part of Reactor Vessel is fabricated from forged material. These ring-forged shells eliminate the need for longitudinal welds thereby reducing production and inspection time. Materials of the Reactor Vessel are carefully selected to withstand high pressure, temperature, and radiation.

Shell & Nozzle, Bottom Head Welding
The Reactor Vessel is composed of shells, nozzles and domes. The shells are first welded together. Then holes are machined to the shell for the assembly of nozzles. Finally, the shell and bottom head dome are welded to form the complete assembly.

Closure Head Assembly
The Reactor Vessel can sustain pressure by tensioning of studs at closure head. At the Closure Head, 108 nozzles are installed for the connection with Control Element Drive Mechanisms. The Closure Head Assembly and the Vessel are sealed by 54 Studs and 2 O-Rings. The Pad & Lug welded over the Closure Head surface are installed for supporting the Integrated Head Assembly.

- Various types supplied by Doosan

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>650 MWe</td>
<td>Qinshan/China</td>
</tr>
<tr>
<td>950 MWe</td>
<td>Hanul #1,2/Korea</td>
</tr>
<tr>
<td>1,000 MWe</td>
<td>OPR1000/Korea</td>
</tr>
<tr>
<td>1,400 MWe</td>
<td>APR1400/Korea, UAE</td>
</tr>
<tr>
<td>1,000 MWe</td>
<td>AP1000™/China, USA</td>
</tr>
</tbody>
</table>
FEATURES OF APR1400 STEAM GENERATOR

The Steam Generator is a type of heat exchanger which provides steam to drive the turbine generator. While heat is exchanged from the Primary Coolant Loop to the Secondary Coolant Loop within the Steam Generator, the coolant within each loop is isolated from the other.

Design Characteristics

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Design Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of SGs</td>
<td>2</td>
</tr>
<tr>
<td>Number of tube per SG</td>
<td>13,102</td>
</tr>
<tr>
<td>Tube material</td>
<td>Alloy 690</td>
</tr>
<tr>
<td>Heat transfer area (ft²)</td>
<td>163.67</td>
</tr>
<tr>
<td>Tube side operating pressure (psia)</td>
<td>2,250</td>
</tr>
<tr>
<td>Shell side maximum operating pressure (psia)</td>
<td>1,100</td>
</tr>
<tr>
<td>Steam pressure at full power (psia)</td>
<td>1,000</td>
</tr>
<tr>
<td>Steam temperature at full power (°F)</td>
<td>545</td>
</tr>
<tr>
<td>Steam flow per SG at full power (lb/hr)</td>
<td>8.975×10^6</td>
</tr>
<tr>
<td>Maximum moisture at outlet at full power (w/o)</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Material

The Steam Generator is fabricated from ring forged shells and from close die forged heads. These forgings eliminate the need for longitudinal welds thereby reducing production and inspection time. Materials of Steam Generator are carefully selected to withstand high pressure, temperature and radiation.

Tube Sheet Drilling

The tubesheet has drilled holes for Installation of U-bend tube using 3-spindle deep hole drilling machine.

Tube Installation

The U-bend tubes are installed, then carefully expanded the diameter of tube sheets. The expansion process shall be carefully controlled so as to produce as low as residual stress in the tubes as is reasonably achievable.

- Various types supplied by Doosan

<table>
<thead>
<tr>
<th>Power Type</th>
<th>MWe</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANDU</td>
<td>700</td>
<td>(Kori #1) China</td>
</tr>
<tr>
<td>Hanul #1,2</td>
<td>587</td>
<td>(Hanul #1,2 RSG/Korea)</td>
</tr>
<tr>
<td>Sequoyah #1,2</td>
<td>1,174</td>
<td>(Sequoyah #1,2 RSG/USA)</td>
</tr>
<tr>
<td>OPR1000</td>
<td>1,000</td>
<td>(Korea)</td>
</tr>
<tr>
<td>APR1400</td>
<td>1,400</td>
<td>(Korea, UAE)</td>
</tr>
<tr>
<td>APR1000™</td>
<td>1,000</td>
<td>(China, USA)</td>
</tr>
</tbody>
</table>
FEATURES OF APR1400
REACTOR COOLANT PUMP

The Reactor Coolant Pump (RCP) is single stage centrifugal pump with cantilevered impeller and vertical shaft with hydrodynamic mechanical seals. The RCP located in Reactor Coolant System circulates reactor coolant from two Steam Generators to the Reactor Vessel and back to the Steam Generators.

Design Characteristics

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Design Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of RCP</td>
<td>4</td>
</tr>
<tr>
<td>Rated Head (ft)</td>
<td>375</td>
</tr>
<tr>
<td>Rated Flow (gpm)</td>
<td>121,600</td>
</tr>
<tr>
<td>Rated Pump Speed (rpm)</td>
<td>1,190</td>
</tr>
<tr>
<td>Design Pressure (psia)</td>
<td>2,500</td>
</tr>
<tr>
<td>Design Temperature (°F)</td>
<td>650</td>
</tr>
<tr>
<td>RCP Type</td>
<td>Vertical Single-Stage Centrifugal Volute Pump Bottom Suction & Horizontal Discharge</td>
</tr>
<tr>
<td>Brake Horse Power (HP)</td>
<td>13,900</td>
</tr>
</tbody>
</table>
Curved Teeth Coupling - Designed as flexible coupling, torque is transferred via special toothed naves and a coupling sleeve.

Oil Feed Device - Oil Feed Device is designed to boost circulation of oil in axial & radial bearing by its own blade in the upper bearing housing. High torque is transferred via special toothed naves and a coupling sleeve.

Removable Shaft Section - Removable shaft section is designed to be possible to change upper and lower seals without removing other parts.

Stand Still Seal - In case of seal failure pressure boundary can be closed by stand still sea.

3rd Stage Hydrodynamic Seal - Hydrodynamic effect even at low speed. No mixed friction at low thermal load. No thermal deformations due to friction. Sufficient circulation and cooling.

Diffusor - 11-vane diffusor, other surfaces like water passages between diffusor blades are finished by shot peening.

Impeller - Closed semi-axial impeller, 6-blade. Back blades are assisting pressure difference for emergency injection water supply.
FEATURES OF APR1400

MAN MACHINE INTERFACE SYSTEM

Man Machine Interface System (MMIS) is equivalent to the brain and nerve system of a nuclear power plant. It monitors and controls the operating conditions to prevent accidents proactively.

Doosan achieved a complete development of MMIS which is core part of nuclear technology that was relied on overseas companies in the past by an accomplishment of R&D in cooperation with domestic utility, KHNP and research institutions. Doosan will make the highest quality of service for the clients as total provider of the world nuclear power plant equipment who produces safe and reliable nuclear I&C system based on global-top technology.

Features

<table>
<thead>
<tr>
<th>System</th>
<th>Technical Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPS</td>
<td>Coincidence processor structure (3 Rack with 3 Processor Module)</td>
</tr>
<tr>
<td>RCOPS</td>
<td>Improvement of CEA signal checking algorithm to avoid CEA position latching problem</td>
</tr>
<tr>
<td>ESF-CCS</td>
<td>Maintenance Feature: MTP/ITP in each safety system</td>
</tr>
<tr>
<td>QIAS-P</td>
<td>Application of redundant communication module and path</td>
</tr>
<tr>
<td>QIAS-N</td>
<td>Application of separated network with IPS</td>
</tr>
<tr>
<td>IPS/CPS</td>
<td>IPS Server and Network configuration based on DCS</td>
</tr>
</tbody>
</table>
| PCS NPCS/DPS | Redundant power controller
DC Hold Power automatic commitment |
| NIMS | High performance industrial computer included PCI type data acquisition device |
| MCR/LDP | Nuclear Steam Supply System & Balance of Plant integrated Control Design |
Architecture of DOOSAN MMIS for APR1400

- Control Rod Control System (CRCS)
- Control Element Drive Mechanism Control System (CEDMCS)
- Main Control Room (MCR)
- Fuel Handling Equipment (FHE)
- Vital Bus Power Supply System (VBPSS)
- Motor Generator Set (MG-SET)
- Reactor Trip Switchgear System (RTSS)
- Gas Stripper & Boric Acid Concentrator Instrumentation and Control (GS- BAC I&C)

Other Products

- Control Rod Control System (CRCS)
- Control Element Drive Mechanism Control System (CEDMCS)
- Main Control Room (MCR)
- Fuel Handling Equipment (FHE)
- Vital Bus Power Supply System (VBPSS)
- Motor Generator Set (MG-SET)
- Reactor Trip Switchgear System (RTSS)
- Gas Stripper & Boric Acid Concentrator Instrumentation and Control (GS- BAC I&C)
Doosan also supplied the major components of the PHWR (Pressurized Heavy Water Reactor) plants at Wolsong units 2, 3 & 4 and Qinshan CANDU units 1 & 2 in China. PHWR uses natural uranium which is simpler to handle and easier to process into fuel assemblies than enriched uranium.

Steam Generator (PWHR)
Four Steam Generators are installed in the RCS (Reactor Coolant System) of PHWR plant.

Feeder Header Assembly
The Feeder consists of several hundred pipes which transmit heated heavy water from Calandria to Steam Generator. The Header merges and distributes the coolant.
CASK

Doosan is one of the best Cask Manufacturing Companies in the world, especially. Doosan entered into Cask business in 1990 and delivered 2 sets of Cask for Kori nuclear power plant in 2002 and 1 set of Cask for Hanbit Nuclear Power Plant unit 2 and 2 sets of Cask for Hanul Nuclear Power Plant units 1 & 2 in 2007.

<table>
<thead>
<tr>
<th>Experience List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Name</td>
</tr>
<tr>
<td>KSC-4</td>
</tr>
<tr>
<td>Kori Cask</td>
</tr>
<tr>
<td>HBN/HUN Cask</td>
</tr>
</tbody>
</table>
Doosan strives to provide the best technical services and solutions to operate nuclear power plants with its engineering capabilities and manufacturing experiences.

NUCLEAR SERVICES

Maintenance
Doosan retains Reactor Coolant Pump internal parts maintenance capability, including chemical decontamination. Doosan also provides inspection & maintenance services on site for refueling system.

Manufacture of Replacement equipment
Replacement equipment for all domestic and numerous overseas projects have been supplied by Doosan.

- Domestic : 12 RSGs & 4 RRVCHs
- Overseas : 12 RSGs & 7 RRVCHs

Installation of Replacement equipment
SG & RVCH Replacement for domestic nuclear power plant has been successfully performed by Doosan.

- Hanul units 3&4 SG Replacement
- Kori unit 1 RVCH Replacement

Abbreviations
- (R)RVCH : (Replacement) Reactor Vessel Closure Head
- (R)SG : (Replacement) Steam Generator
Repair

Doosan has various facilities and extensive field experiences for Reactor Vessel (RV), Steam Generator (SG), Pressurizer (PZR) & Reactor Coolant Loop (RCL) repair.

- RV: Overlay & Seal Weld Repair of Control Element Drive Mechanism Nozzles & Vent Nozzle, In-Core Instrumentation Nozzle Repair, RV Stud Hole Inspection & Repair
- SG: Tube Plugging, Repair of Divider Plate & Nozzles, Cleaning of Tube Inside (CANDU type)
- PZR: Heater Replacement, Overlay of Dissimilar Metal Welds
- RCL: Thermal/Sleeve Removal in Safety Injection Nozzle, Repair of Resistance Temperature Detector Nozzle

Non Destructive Examination

Doosan retains 10 EPRI Performance Demonstrations and a numerous skilled staffs with NDE expert qualification and conducts Non Destructive Evaluation Inspection on operating Nuclear power plant and Pre service inspection.

- RVCH Penetration Nozzle and Vent Pipe Inspection
- ICI (BMI) Nozzle & Weld Inspection
- Reactor Coolant System Pump Shaft Inspection
- Pressure Vessel Weld Auto and Manual Ultrasonic test
- Steam Generator Tube Eddy current test

Others

Supplying Spare Parts
- Pressurizer Heater, Reactor Vessel Studs & Nuts, etc.

Upgrade and Modification
- Fuel Handling System, Integrated Head Assembly, High Density Fuel Rack, etc

Technical Advisory Service
- Installation
- Startup test

* Abbreviations
- EPRI: Electric Power Research Institute
- CANDU: Canadian Deuterium Uranium Reactor